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Abstract. Steels are the basic construction materials used in machine building, construction and in the construction 

industry. These materials often work in contact with aggressive factors. When subjected to corrosion, they go to 

their natural oxidation state. Mainly carbon steel C35 is intended for quenching and tempering. The steel is most 

often used for the production of tools and machine elements that are subject to medium loads and at the same time 

are very resistant to abrasion. Different heat treatment conditions result in different microstructural structure of 

C35 steel, and therefore also its different properties, including corrosive ones. The corrosion of these steels is easy 

to control. It is usually superficial. One of the more complex corrosive environments is animal slurry. As a result, 

the corrosive effects of animal slurry are complex and time-varying. Slurry is a mixture of dung and urine. The 

aggressive corrosive constituents in slurry are urea, uric acid, naturally excreted chloride as well as ammonia or 

ammonium salts. The purpose of this article is to investigate corrosion resistance in different time (48, 96, 144, 

192, 240, 288, 336 and 432 hours) using weight loss and profile roughness parameters of structural steel in grade 

C45 in natural water solution of animal slurry at room temperature (25oC). The tests were carried out for steel 

subjected to normalizing annealing as well as hardening and tempering at 300oC. In order to be able to compare 

the corrosion rate of stainless steels with steel C35, it was decided to carry out the tests based on the methodology 

of testing corrosion-resistant steels. Corrosion tests show that the tested steel in animal slurry as a corrosive 

environment is characterized by a different corrosion rate, the measure of which for C35 steel may be the surface 

roughness. 
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Introduction 

Materials intended for building structures and elements of agricultural machinery should ensure not 

only aesthetic appearance, but also the safety of people and objects during use [1-9]. C35 steel is one of 

the most popular non-alloy steels. It is often used in various types of constructions, also periodically 

working in contact with aggressive media. C35 steel contains from 0.32% to 0.39% C and, in small 

amounts, of silicon, manganese, chromium, nickel, molybdenum, copper, sulphur and phosphorus. All 

the chemical elements and different heat treatment conditions it contains affect the mechanical, physical 

and chemical properties of steel, including corrosion resistance. Due to its low cost and high efficiency, 

steel grade C35 is widely used in agriculture, construction and engineering for structural components. 

This steel is mainly used in the form of bars and sections in steel structures, as well as in the production 

of various machine parts, such as shafts, cylinders, gear wheels, axles, discs, traverses, etc. The 

development of corrosion-resistant steels resulted in the gradual displacement of carbon steels from 

application in structures operating in an aggressive environment [10-20]. Nevertheless, economic factors 

predispose these steels to further use in harsh environments. 

Elements of machines and devices used in agriculture and agricultural constructions are in contact 

with an aggressive corrosive environment during their work included in animal slurry and its aqueous 

solutions. Animal manure products that occur naturally in the farm atmosphere, such as chloride fumes, 

NOx and SOy, HzS and others, should also be considered. Slurry is a mixture of dung and urine, and 

farmyard manure etc. The corrosive constituents in slurry are first of all: ammonia and its salts, urea, 

uric acid, naturally excreted chloride [21-31].  

Artificial fertilizers and animal slurry are the basic corrosive environments faced by structures, 

machinery and technical facilities used in agriculture. Considering the importance of corrosion 

resistance of steel to animal slurry as the basic corrosive factor in agriculture, it was decided to test the 

corrosion rate of C35 low-carbon structural steel in an aqueous solution of animal slurry under normal 

temperature conditions (room temperature). The issues and conclusions contained in this article may be 

of interest to both researchers-practitioners in the field of materials science [32-34], related management 

[35, 36], and researchers involved in the implementation of new methods of data analysis [37; 38]. This 

paper presents the corrosion tests of normalizing annealing as well as hardening and tempering at 300 ºC 

and is an extension of the tests presented in [27-28] for the alloy from the same group not cold worked. 
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Materials and methods 

The research was performed on carbon C35 (1.0501) steel flat bar t = 8.00 mm thickness with 

chemical composition according to the PN-EN ISO 683-1:2018-09 [39]. The actual chemical 

composition of steel consists of: 0.36% C, 0.22% Si, 0.54% Mn, 0.024% P, 0.26% S, 0.16% Cr, 0.19% 

Cu, 0.21% Ni and 0.002% N. The specimens from the steel flat bar t = 8.00 mm thickness were cut 

samples by a mechanical saw to size 40 x 10 mm (area of 16 cm2). Next the samples were ground on 

the grinding wheel successively from Ra = 0.36 to Ra = 0.44 μm. The samples made of C35 steel, after 

preparation, were subjected to normalizing annealing at the temperature of 880 ºC and austenitizing time 

of 8 minutes and cooling in air, and then hardening from the temperature of 860 ºC with cooling in 

water. Immediately after hardening, the samples were tempered at the temperature of 300°C for 

2.5 hours with air cooling. After heat treatment, the samples were ground on sandpaper, obtaining the 

roughness as before the heat treatment. The samples were rinsed and cleaned by 95% C2H5OH before 

the samples were soaked in the corrosive. The samples despite the tempered martensitic microstructure 

(Fig. 1) were tested in accordance with the standard dedicated for stainless steel PN-EN ISO 3651-

1:2004 [40]. Taking into account the more and more frequent use of corrosion-resistant steels in an 

aggressive environment, it was decided to apply the criteria describing the corrosion process provided 

for corrosion-resistant steels. This approach will make it possible to compare the corrosion parameters 

of carbon steels and corrosion-resistant steels. The corrosive mixture was prepared as an aqueous 

solution of 80% animal slurry with the composition shown in Table 1 and 20% distilled water. Both 

components were measured by volume. The corrosion rate of the steel was determined by measuring 

the weight loss. 

Table 1 

Mean chemical compositions of animal slurry and parameters  

P, mg·L-1 K, mg·L-1 Mg, mg·L-1 Ca, mg·L-1 Na, mg·L-1 Zn, mg·L-1 NO3, mg·L-1 

175 158 6.4 39.2 102 0.41 35 

PH EC, mS·cm-2 BOD, mg·L-1 COD, mg·L-1 TKN, g·L-1 

6.7 5.86 2350 2980 1.82 

Note: EC – electric conductivity, BOD – biochemical oxygen demand, COD – chemical oxygen demand,  

TKN – total kjeldahl nitrogen 

The corrosion rate of S235JR steel measured in mm per year was calculated with the use of the 

below formula (1), measured in g·m-2 was calculated with the use of the below formula (2): 
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where  t – time of treatment in a corrosive solution of boiling nitric acid, hours; 

 S – surface area of the sample, cm2; 

 m – average mass loss in boiling solution, g; 

  – sample density, g·cm-3. 

The influence of animal slurry on the C35 carbon steel corrosion resistance was investigated using 

the weight loss. The mass of samples was measured by the Kern ALT 3104AM general laboratory 

precision balance with accuracy of measurement 0.0001 g. The time range of the research was: 48, 96, 

144, 192, 240, 288, 336, 384 and 432 hours. 

Profile roughness parameters were analyzed by the Diavite DH5 profilometer for which the 

maximum length of the measuring section is lt = 15 mm (evaluation length plus start and finish lengths) 

(limitation of the measuring instrument). The evaluation length (ln) was dependent on the Ra parameter, 

for the soaking time 48 and 96 hours ln = 4 mm, for the soaking time from 144 hours ln = 12.5 mm. The 

tracing speed was 0.25 mm·s-1.  
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Results and discussion 

The microstructure of C35 steel in delivery condition is presented in Fig. 1 (medium-tempered 

martensite) and the Abbott curve surface profilogram of C35 steel after corrosion tests in animal slurry 

at room temperature for the time 432 hours is presented in Fig. 2. 

    

 

 

 

Fig. 1. Microstructure of C35 steel in 

delivery condition, etched with Nital 

 Fig. 2. Abbott curve surface profilogram of C35 

steel after corrosion tests in animal slurry at 

room temperature for 432 hours (Fig. 3) 

Profile roughness parameters of C35 steel after corrosion tests in animal slurry at room temperature 

for 432 hours are presented in Fig. 3.  

 

Fig. 3. Profile roughness of C35 steel after corrosion tests  

in animal slurry at room temperature for 432 hours 

Profile roughness parameters of C35 carbon steel for different corrosion time with the determination 

coefficient are presented in Fig. 4 for Ra and Rq and in Fig. 5 for Rt and Rp. Changes to all profiles of 

roughness of C35 quenching and tempered at the temperature of 300 ºC after corrosion tests in animal 

slurry at room temperature for different corrosion time can be represented with sufficient accuracy by a 

polynomial function (Fig. 4-5).  

 

Fig. 4. Profile roughness of C35 steel after corrosion tests in animal slurry at room temperature 

for different corrosion time: Ra – arithmetical mean roughness value, μm; Rq – mean peak width, μm 

The corrosion rate and roughness profile of the steel consists of three periods Fig. 4-Fig. 5. The 

first, in which the increase in the corrosion rate and surface roughness is low. The second, where there 

is a faster increase in roughness and corrosion speed. The third, in which the roughness and corrosion 

speed are stabilized [24; 30-31]. To emphasize all three corrosion periods, the results are presented in 

the form of fourth order polynomials. In order to relate the corrosion results to the proportional function, 

line graphs were also plotted. 
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Percentage effects of the corrosion time on the relative mass loss (RML) of C35 carbon steel after 

corrosion tests in animal slurry at room temperature (Fig. 6) is sufficiently accurately described by 

a second degree polynomial function. In progress of keeping the steel in the aqueous solution of animal 

slurry, a slow increase in the mass corrosion loss was noted. Over time, the weight loss was faster and 

faster. This relationship is confirmed by the change of the Ra parameter (Fig. 4). Up to approximately 

144 hours of soaking the steel, the increase in the corrosion rate was linear. With increasing the soaking 

time, greater dynamics of the increase in the weight loss with the passage of time was observed. 

 

Fig. 5. Profile roughness of C35 steel after corrosion tests in animal slurry at room temperature 

for different corrosion time: Rp – maximum roughness depth, μm;  

Rt – total height of the roughness profile, μm  

 

Fig. 6. Percentage effects of the corrosion time on the relative mass loss (RML) of C35 carbon 

steel after corrosion tests in animal slurry at room temperature 

The effect of corrosion time on the corrosion rate measured in mm per year of C35 steel after 

corrosion tests in animal slurry at room temperature with determination coefficient is presented in Fig. 7 

and in gram per m2 in Fig. 8. 

 

Fig. 7. Effect of the corrosion time on the corrosion rate measured in mm per year  

of C35 steel after corrosion tests in animal slurry at room temperature 

 

Fig. 8. The effect of the corrosion time on the corrosion rate measured in gram per m2  

of C35 steel after corrosion tests in animal slurry at room temperature 

On the basis of the analysis of changes in the surface roughness parameters (Fig. 4 and Fig. 5) and 

the corrosion rate (Fig. 7 and 8), smooth transitions between the individual stages of corrosion were 
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found. A similar curve of the course of corrosion was described in [24]. However, the authors did not 

distinguish the third period of corrosion, although it occurs in 4 out of 5 presented curves. Nevertheless, 

three periods of corrosion can be distinguished. The first period ends after 144 hours of soaking the steel 

and the second period after 288 hours. Based on the results of the research presented in this paper and 

the results of the research presented in [39-40], it was found that animal slurry at room temperature is 

an aggressive corrosive medium for steel from the C35 group. The slower corrosion rate was achieved 

for shorter soaking times and therefore for penetrating the steel surface layer. This is most likely due to 

the greater hardness of the steel after hardening and tempering. 

Conclusions 

1. Animal slurry with a room temperature is an aggressive corrosive medium for the steel grade C35. 

2. A gentle transition between the various stages of corrosion was noted, which is reflected in the 

surface roughness and corrosion velocity. In the first stage of soaking the samples (up to 144 hours), 

the corrosion rate is slow and linear. After lengthening the soaking time, the course of the corrosion 

process is well reflected by the second degree curve. It proves the increase in the corrosion rate of 

C35 steel. 

3. After soaking the steel for 432 hours, an increase in the roughness parameters (approx.) Ra from 0.4 

to 21 µm, Rq from 0.5 to 28 µm, Rp from 4.2 to 123 µm and Rt from 5.5 to 181 µm and an increase 

in the corrosion rate from 7 to 29 mm·year-1 and 6 to 26 g·m-2 are observed. 

4. Determining the corrosion rate using the methodology used for corrosion-resistant steel can assist 

designers in rationally selecting the material of constructions. 
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